Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS
نویسندگان
چکیده
Recording of glutamate-activated currents in membrane patches was combined with RT-PCR-mediated AMPA receptor (AMPAR) subunit mRNA analysis in single identified cells of rat brain slices. Analysis of AMPARs in principal neurons and interneurons of hippocampus and neocortex and in auditory relay neurons and Bergmann glial cells indicates that the GluR-B subunit in its flip version determines formation of receptors with relatively slow gating, whereas the GluR-D subunit promotes assembly of more rapidly gated receptors. The relation between Ca2+ permeability of AMPAR channels and the relative GluR-B mRNA abundance is consistent with the dominance of this subunit in determining the Ca2+ permeability of native receptors. The results suggest that differential expression of GluR-B and GluR-D subunit genes, as well as splicing and editing of their mRNAs, account for the differences in gating and Ca2+ permeability of native AMPAR channels.
منابع مشابه
Evaluation of GluR2 subunit involvement in AMPA receptor function of neonatal rat hypoglossal motoneurons.
AMPA receptors (AMPAr) mediate fast synaptic responses to glutamate and, when they lack the GluR2 subunit, are strongly Ca2+ permeable and may increase intracellular Ca2+ levels. Because hypoglossal motoneurons possess restricted ability to buffer internal Ca2+ and are vulnerable to Ca2+ excitotoxicity, we wondered if, in these cells, any significant Ca2+ influx could be generated via AMPAr act...
متن کاملFunctional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons.
AMPA- and NMDA-type glutamate receptors (AMPARs and NMDARs) mediate excitatory synaptic transmission in the basal ganglia and may contribute to excitotoxic injury. We investigated the functional properties of AMPARs and NMDARs expressed by six main types of basal ganglia neurons in acute rat brain slices (principal neurons and cholinergic interneurons of striatum, GABAergic and dopaminergic neu...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملDifferential expression of AMPA receptor subunits in NOS-positive neurons of cortex, striatum, and hippocampus.
AMPA receptor (AMPAR) subunits expression was studied in nitric oxide synthase (NOS)-positive neurons of the adult rat cortex, striatum, and hippocampus, by a double-labeling approach, combining nonradioactive in situ hybridization and immunocytochemistry. The majority of cortical and hippocampal NOS-immunopositive neurons were characterized by a predominant expression of GluR-A and -D mRNA and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 15 شماره
صفحات -
تاریخ انتشار 1995